Multiphase modelling of the effect of fluid shear stress on cell yield and distribution in a hollow fibre membrane bioreactor
نویسندگان
چکیده
We present a simplified two-dimensional model of fluid flow, nutrient transport and cell distribution in a hollow fibre membrane bioreactor, with the aim of exploring how fluid flow can be used to control the distribution and yield of a cell population which is sensitive to both fluid shear stress and nutrient concentration. The cells are seeded in a scaffold in a layer on top of the hollow fibre, only partially occupying the extracapillary space. Above this layer is a region of free-flowing fluid which we refer to as the upper fluid layer. The flow in the lumen and upper fluid layer is described by the Stokes equations, whilst the flow in the porous fibre membrane is assumed to follow Darcy's law. Porous mixture theory is used to model the dynamics of and interactions between the cells, scaffold and fluid in the cell-scaffold construct. The concentration of a limiting nutrient (e.g. oxygen) is governed by an advection-reaction-diffusion equation in each region. Through exploitation of the small aspect ratio of each region and asymptotic analysis, we derive a coupled system of partial differential equations for the cell volume fraction and nutrient concentration. We use this model to investigate the effect of mechanotransduction on the distribution and yield of the cell population, by considering cases in which cell proliferation is either enhanced or limited by fluid shear stress and by varying experimentally controllable parameters such as flow rate and cell-scaffold construct thickness.
منابع مشابه
Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor.
A 2D model is developed for fluid flow, mass transport and cell distribution in a hollow fibre membrane bioreactor. The geometry of the modelling region is simplified by excluding the exit ports at either end and focusing on the upper half of the central section of the bioreactor. Cells are seeded on a porous scaffold throughout the extracapillary space (ECS), and fluid pumped through the biore...
متن کاملOptimising Cell Aggregate Expansion in a Perfused Hollow Fibre Bioreactor via Mathematical Modelling
The need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs) have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow ...
متن کاملEvaluating the Sintering Temperature Control Towards the Adsorptivity of Ammonia onto the Natural Zeolite Based Hollow Fibre Ceramic Membrane
The disproportionate quantity of ammonia presence in water has led to serious drinkable water scarcity worldwide. The abundant source of mineral and superior cations selectivity has made natural zeolite as a good adsorbent for the ammonia removal. This work aims to fabricate natural zeolite based hollow fibre ceramic membrane (HFCM) via extrusion based phase inversion and sintering techniques f...
متن کاملMathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor.
We develop a simple mathematical model for forced flow of culture medium through a porous scaffold in a tissue-engineering bioreactor. Porous-walled hollow fibres penetrate the scaffold and act as additional sources of culture medium. The model, based on Darcy's law, is used to examine the nutrient and shear-stress distributions throughout the scaffold. We consider several configurations of fib...
متن کاملEfficient treatment of baker’s yeast wastewater using aerobic membrane bioreactor
A membrane bioreactor (MBR) system based on a dead-end immersed hollow fiber membrane and filamentous fungus Aspergillus oryzae were used for treatment of baker’s yeast wastewater. The fungus was adapted to the wastewater in the bioreactor for two weeks before starting the continuous process. Average organic loading rate of 4.2 kg COD/m3.d was entered the bioreactor. MBR system was able to redu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2015